Unsupervised feature dimension reduction for classification of MR spectra.
نویسندگان
چکیده
We present an unsupervised feature dimension reduction method for the classification of magnetic resonance spectra. The technique preserves spectral information, important for disease profiling. We propose to use this technique as a preprocessing step for computationally demanding wrapper-based feature subset selection. We show that the classification accuracy on an independent test set can be sustained while achieving considerable feature reduction. Our method is applicable to other classification techniques, such as neural networks, support vector machines, etc.
منابع مشابه
Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملOptimization of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training ANFIS with different repetitions
Introduction: One of the leading causes of death among people is brain tumors. Accurate tumor classification leads to appropriate decision-making and providing the most efficient treatment to the patients. This study aims to optimize of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) w...
متن کاملFeature dimension reduction for microarray data analysis using locally linear embedding
Cancer classification is one major application of microarray data analysis. Due to the ultra high dimensionality nature of microarray data, data dimension reduction has drawn special attention for such type of data analysis. The currently available data dimension reduction methods are either supervised, where data need to be labeled, or computational complex. In this paper, we proposed to use a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance imaging
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2004